《分数的基本性质》说课稿(通用18篇)
作为一名默默奉献的教育工作者,总不可避免地需要编写说课稿,说课稿有助于顺利而有效地开展教学活动。我们该怎么去写说课稿呢?下面是小编帮大家整理的《分数的基本性质》说课稿,希望对大家有所帮助。

《分数的基本性质》说课稿 1
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的'分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
《分数的基本性质》说课稿 2
一、说教学理念
1、以学生发展为本,着力强化主体意识。
2 、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、 致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法。
4、联系生活实际、感受数学与现实世界的紧密联系,体验数学的应用价值。
二、说教材
《分数的基本性质》一课是九年义务教育六年制小学数学第九册第四单元的内容。它是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”、“极限”等数学思想方法。
3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
本课的教学重点:在通过观察、比较后抽象、概括出分数的基本性质,并会简单应用。
本课的教学难点:理解和掌握分数的基本性质,沟通与商不变的规律之间的联系与区别。
教学准备有:多媒体课件、每位学生二张长方形纸、两张圆形纸。
三、说教法
本课的教学力求改变过去重知识,轻能力;重结果,轻过程;重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务的思想。根据学生的学情,以自主探究为主线,以发展创新为宗旨,为学生提供学习的材料,采用引导探究、引导合作、引导发现、组织讨论、组织练习等教法。精心组织一系列有效的数学活动,让学生全面、全程、全心参与到每一个教学环节中,努力使课堂多一些自主、少一些包办;多一些民主、少一些权威,实现教学为学服务的目的。
苏霍姆林斯基说过:在人的心灵深处,总有一种根深蒂的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要尤其强烈。因此,当学生对二分之一等于四分之二等于六分之三产生疑问并急于了解其中奥秘时,没有把现成的知识直接传授给学生,令他们得到暂时的满足,而是充分相信学生的认知潜能。在新知教学环节中,我主要采用引导探究、引导体验、组织讨论等方法最大限度地给予学生自主探索的时间和空间,把主动权交给学生让学生以自己的方式自由、开放地去探索、发现、创造分数的基本性质,让他们在尝试中发现、讨论中明理、合作中成功、质疑中发展,体验知识的形成过程,使学生的个性得到发展,创造欲得到满足。
现代教学论认为:要让学生动手做科学,而不是用耳朵听科学。学生在写出一组大小相等的分数后我让学生用自己喜欢的方法加以验证,这一验证的过程使学生在动脑、动口、动手,多种感官配合下,把静态的知识转化为动态的求知过程。
新课程标准指出:学生的数学学习应当是一个主动和富有个性的过程。因此在例题教学环节,我采用自主探究的学法,让学生自主进行学习,从而学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。
在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学习方法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。
1、学生在探究分数的基本性质时,学生主要采用自主发现法、操作体验法、合作交流法,学生在得出二分之一等于四分之二等于六分之三后,小组合作找出几组像这样大小相等的'分数,在这一过程中学生为了能写出大小相等的分数,必然会产生对那组等式进行观察的愿望,从中有所发现。之后学生通过同伴间的交流,运用折纸、等多种方法证明自己写出的那组分数大小相等,他们在尝试中发现,在实践中体验。最后学生交流在写数过程中的发现,最后在讨论中明理,揭示出分数的基本性质。
2、在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小不同的分数,并尝试完成做一做,达到检验自学的目的。
当然,由于学生所处的文化环境、家庭背景和自身的思维方式的不同,不同的学生所采用的学习方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。
五、 说教学程序
依据新的教学理念及学生的认知特点,将本课的教学设计为以下四个过程:即谈话导入、提出问题;自主探索、寻找规律;运用规律、巩固深化;反思评价,完善认知。
第一、谈话导入、提出问题:
前几节课我们学习了分数的意义以及数与除法的关系等内容,我想大家一定学的非常好对吗?先来考考大家!
设计意图:这的样设计,直接扣入主题,体现了数学的简洁之美,迅速的点燃孩子们求知欲望的火花,从而为主动探究新知聚集动力。
第二、自主探索,寻找规律。
此过程共设计了以下三个环节:
第一个环节:建立几组相等的分数,提供探究的数据。
设计意图:这样的设计,不仅复习了已有的知识,而且调动了孩子学习的积极性,用数形结合的思想理解分数的大小,从而很直观上建立起三组分子和分母各不相同而分数的大小确相等的数学。再通过学习已有的学习经验和手中的学具,让学生接着举出几组分数大小相等的分数,这样师生共同呈现的多组分数,为下面研究问题提供了大量的数据。
第二个环节:小组合作,探究规律。
设计意图:“疑是思之始,学之端”。这些分子和分母各不相同而分数大小确相同的分数之间一定存在着一些千丝万缕的联系,我们需要进一步的研究。这样的设计,最大限度的调动了孩子的学习积极性,使学生成为课堂学习的主人,让他们在独立自主,合作交流的基础上,对自己的所疑之处,提出合理的说明和解释,通过师生共同的梳理,把静态的知识转化为动态的求知程,从而得出结论。
第三个环节:沟通联系,揭示规律。
设计意图:联系分数与除法的关系,结合商不变的性质,进一步说明分数基本性质。这样的设计,从实践的观察和发现到理论的证明,层层深入的证明了我们发现规律的合理性,从而建立起“商不变的性质”与“分数的基本性质”之间的内在联系,新的学习活动与原有的认知结构相互作用,引起了认知结构的重新构建,这是从理论上对规律的证明,在大量的实践材料和理论证明中完成了“分数的基本性质”这一数学模型的构建过程。
第三、运用规律、巩固深化、拓展思维
设计意图:这一环节是进一步理解、深化新知识的重要环节,在设计练习题时,要体现“让不同的学生在数学上有不同的发展”这一新课程的理念。主要目的是培养学生的自主解题能力,在面对全体学生的基本上有所提高,注意对知识的巩固。立足于基本练习,注意练习与学生生活实际的联系,让学生学有价值的数学。通过综合练习培养学生的思维,也渗透“极限”和“归纳”的数学思想方法。
第四、反思评价,完善认知
你有什么收获?还有什么不明白的?你认为自己在今天课堂上的表现怎样?你帮助了谁或谁帮助了你?
设计意图:这样的设计,不但让学生谈知识技能方面的收获,还着重让学生谈了学习的方法、情感态度方面的收获,再一次激起良好的情绪体验。
《分数的基本性质》说课稿 3
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的`分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
《分数的基本性质》说课稿 4
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。
《分数的基本性质》反思
本节我想结合我校申报的市级课题《创设数学问题情境激发学生学习兴趣》和本人负责的市级课题《网络环境下促进自主学习的教学设计的研究》来谈谈这节课的教学设想,以及结合本节课的教学情况谈几点反思。
探索性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培养学生提问题的能力,教师以合作者、引导者的身份与学生一起探索,经历知识的获取过程,从而达到探究的目的,针对这点认识,这节课在我们学校课题组成员的集体备课下,作了这样的设计。这节课主要是,让学生能够从中感受到学习的乐趣,精心设计问题,让学生主动探求知识,发展思维。
1、情境的创设:“爱因斯坦说:“兴趣是最好的老师。”新课标提倡要关于创设情境,小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。通过和尚分饼,创设问题作为引子贯穿全课。利用课件中生动的动画,创设一种和谐愉悦的气氛,激发学生的学习兴趣,这点在这节课中我个人觉得达到这个目的。
2、探究活动与数学逻辑思维过去我们常为学生设计相同的学习方式并要求学生按照教师设计的流程展开学习。比如这节课的验证猜想中一本来我是设计了让学生按折、画、剪、比的步骤一步一步来引导学生操作,这样的设计看上去会很热闹,其实学生的操作依然是被教师牵着鼻子走。后来,为了给学生创设个性化的学习空间,我重新设计:“课桌上的信封里放着一些材料,你可以根据自己的需要选择合适的材料来验证自己的猜想,如果你觉得不需要材料,当然也是可以的。”这样的设计能够给予学生一定的探究空间,也增添也活动的趣味性和挑战性。但是在实际教学过程中,由于本人教学能力不够熟练,学生紧张,表现出来的并不像我所想像的那般,但至少可以算已是对传统的一种大胆的突破吧。
在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的.问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。
3、小组合作交流我们班由于在开展课题研究之前,很少可以说几乎没有合作的习惯。而这学期的小组合作的训练方面也做得不够,只能说是交流多于合作,所以在教学过程中出现了一些我预测不到的情况。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。
4、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。
5、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:①有探究结束后的分辨是非,②有新课中的尝试性练习,③有游戏活动。较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练习有效地融合在一起,这也是一个很值得我个人反思的地方
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
《分数的基本性质》说课稿 5
我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、 教材分析
本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、 学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、 教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的'问题。
四、 教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、 教学过程
本一节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化成为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
《分数的基本性质》说课稿 6
我今天说课的内容是北师大版小学数学第九册《分数基本性质》首先,对教材进行分析。
一、教材分析
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
二、学情分析
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
根据教材分析和学生情况,制定如下教学目标
三、教学目标
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
依据教学目标,确定教学重难点
四、教学重难点
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数
理解分数基本性质的含义,掌握分数基本性质的推导过程。
五、教学方法
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
六、教具学具准备
准备大小相等的圆形纸片,水彩笔等。
七、教学过程:分六个环节
(一)故事设疑,揭示课题。我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的14,沙和尚吃第二块饼的28,悟空吃第三块饼的416,他们谁吃的.多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出14,28,416,用彩笔在折的圆上涂出14,28,416,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
(二)合作探索,寻找规律。请同学们观察14,28,416 ; 3|4,68,1216这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
(三)巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母 ( );23=()18621=2()等这样的题,进行练习。
(四)梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
(五)多层练习,巩固深化。
我将设计从巩固到思维拓展三个层次的练习。
1.
2. (1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
3.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上( )。
(六)全课小结
现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?
《分数的基本性质》说课稿 7
今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。
一、教材分析(课件)
《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。
二、教学目标(课件)
根据教材内容及学生的认知水平,我制定了以下教学目标:
1..使学生理解与掌握分数的基本性质。
2.培养学生观察、比较、分析、概括等方面的能力。
三、教法和学法(课件)
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
四、教学过程(课件)
结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。
(一)、创设情境、引发猜想(课件)
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。
(二)、动手操作、初步感知(课件)
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的'设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。
(4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。
课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
五、板书设计
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
《分数的基本性质》说课稿 8
一、说教材
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的.学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
《分数的基本性质》说课稿 9
一、说教学内容的创新处理
《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的'其他分数吧?你还能说出和"2/3"大小相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现什么?
5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。
二、说教学模式
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)
这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、4/8这些分数有什么关系?
(学生会说这三个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/51/64/94/612/16
3/42/320/256/368/18
三、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
《分数的基本性质》说课稿 10
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据 120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的'一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
请同学观察,思考和讨论。投影出思考题:
如何?
结果如何?
变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?
学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)
的变化规律是什么?(学生小组讨论后汇报)教师板书:
教师:试说一说这时分子、分母的变化规律?
学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。
教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。
请学生打开书读两遍。
教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)
用学生自己的例题说明后,用投影片再说明:
口答填空:(投影片)
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习:(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在( )里填上适当的数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
2.把分数化成大小相同而分子或分母是指定数的分数的方法。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
板书设计
《分数的基本性质》说课稿 11
教学目标:
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:学校为了丰富同学们的科技知识,特别准备了三块科普展板,内容涵盖了科技领域的各个方面。同学们认真观察后,你们有什么问题想要提出来呢?赶快分享一下吧!
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用绘图的方式验证的。我们首先绘制了三个相同大小的正方形,代表三块展板,然后将它们分别均匀地划分为2份、4份和8份,接着我们分别选择其中的1份、2份和4份进行涂色(展示学生绘制的图)。通过比较我们发现,涂色部分的大小是相等的,因此我们得出结论:
生2:我们小组采用了折纸的`方法来验证问题。我们首先取了三根相同长度的纸条,然后通过对折将它们分别平均分成2份、4份和8份,并用不同颜色标示每一份(展示学生的折纸情况)。通过折纸的过程,我们小组也发现了(学生在小组中讨论、验证)。
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、自主练习巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。
课堂小结:
一生小结,他生补充,教师评判。
《分数的基本性质》说课稿 12
教学目标:
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
教学重点:
运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
教学难点:
联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
教学准备:
多媒体课件长方形白纸、圆片,彩色笔等。
教学过程:
一、创设情境,激趣导入
师:新学期开始了,校园里发生了许多变化,比如换了全新的课桌,装修了漂亮的洗手间,还新建了文化走廊。最让同学们兴奋的是,学校开设了一个开心农场,让大家可以亲近大自然,学习种植和养殖。说到开心农场,还有一个有趣的小故事。开学初,校长决定将学校一块空地分给四年级、五年级和六年级同学们。他将这块地的三分之一分给了四年级,六分之二分给了五年级,九分之三分给了六年级。四年级的同学们觉得校长分配不公平,因为六年级得到的比他们多,而他们自己得到的比较少。校长听了之后,笑了起来。有谁能猜到校长为什么笑呢?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知
1、小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2、汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个相同的圆形面片分别涂上其中的1/3,2/6,3/9。经过比较发现三块地的面积是一样的。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。
生5:……
3、课件展示,得出结论。
师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:为了更好地激发学生的主体性和个性发展,设计了这样的活动。通过探究活动,充分释放学生个体的潜能,给予他们充足的时间和想象的空间。在小组合作的氛围中,学生可以自由地提出猜想,让实验成为他们的需求。同时,引导学生思考如何验证他们的猜想,让他们带着浓厚的兴趣投入到探究学习中去。这样的设计旨在培养学生独立思考、合作探究的能力,让他们在探究中不断成长和发展。
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书=)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们仔细观察每一个分数,可以发现每一个分数的'分子和分母都在递增。第一个分数的分子和分母分别为1和2,第二个分数的分子和分母分别为2和3,第三个分数的分子和分母分别为3和4。可以看出,分数的分子和分母在递增中。
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:分数的分子和分母同时乘以或(除以)同一个数,分数的值保持不变。这是我们学习的新知识点。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时相同0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学中许多概念和性质都是相通的,比如商不变性质和分数的基本性质。因此在学习中要善于类比和灵活运用,才能举一反三。
三、应用新知,练习巩固。
(一)练一练
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二)判断(抢答)
1、分数的分子、分母都乘过或除以相同的数分数的大小不变。( )
2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。()
3、给分数的分子加上4,要是分数的大小,分母也要加上4。( )
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四、总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、愿大家拥有一双明亮的眼睛,用心聆听知识的声音;愿我们的脑袋像宝藏般装满智慧,让思想在知识的海洋里翩翩起舞。
五、作业
练习册2、4题
板书设计:
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
《分数的基本性质》说课稿 13
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的'2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的
2.在下面的括号里填上适当的数.
《分数的基本性质》说课稿 14
教学内容:
人教版数学五年级下册第57页例1、例2。
教学目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
(3)培养学生的观察、比较、归纳、总结概括能力
(4)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质
教学重点:
探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探究、归纳概括分数的基本性质。
教学过程:
一、情境设置,引入新课:
唐僧师徒四人去西天取经,有一天路过女儿国,国王给了他们师徒四人一块饼。唐僧说:“咱们把这块饼平均分成四块,每人一块吧。”猪八戒听了,急忙说:“一块太少了,师傅我吃得多,就多分给我一块吧”。唐僧看了看贪吃的徒弟,不知道怎么办好。孙悟空说:“师傅,那就把这块饼平均分成八块给他两块吧。”唐僧笑了笑说,“你这个猴子,真狡猾。”
问1:从上面的故事中,你能用学过的知识,表示出他们每人吃了多少饼吗?
问2:猪八戒有没有多吃到饼了?
二、探究新知,解决问题
1、师:到底谁的猜想是正确的呢?
(1)让我们一起来看一个小视频(播放微课),并回答问题:谁吃得多?也就是谁大?为什么?
(2)学生汇报
(3)得出结论:1/4=2/8
2、初步概括分数基本性质
(1)师:这两个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?
提示:从左到右观察,这两个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢?
师板书:分数的分子分母同时乘相同的数,
分数的大小不变。
(2)师:谁来举一个例子。师板书,并问:同时乘以了几?
(3)师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。
师板书:或者除以
3、理解运用分数基本性质
(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)
学生回答,并说明理由。
(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。
(课件出示式子:)这个式子成立吗?
生:因为在分数当中分母乘就等于0,分母不能为0。
师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?
生:不成立,因为除数不能为0
(3)小结:对,因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的.分子、分母不能同时乘0,又因为在除法里0不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数。
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)
师:如果猪八戒学会了分数的基本性质,那傻乎乎的被大师兄捉弄了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.
三、知识运用
1、例2:把2/3和10/24化成分母是12而大小不变的分数。
(1)问:分子分母应怎样变化?变化的依据是什么?
(2)让生独立完成,完成后汇报你是怎样想的?
2.完成课件练习
3、拓展延伸:
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
有位老爷爷把一块地分给三个儿子.老大分到了这块地的1/3,老二分到了这块地的2/6.老三分到了这块的3/9.老大、老二觉得自己很吃亏,于是三人就大吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵.
四、课堂小结
1、看到同学们也笑起来了,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?
五、板书设计
分数的基本性质
1/4 =2/8
分数的分子分母同时乘相同的数(0除外),
除以
分数的大小不变。
《分数的基本性质》说课稿 15
教学要求
①分数是表示部分的数,由分子和分母组成。分数的基本性质包括:分子表示分数的部分数量,分母表示每个部分的总数量;分母不为0,分数为有意义的数;分数可以化简为最简形式,即分子和分母没有公约数;分数可以相互比较大小,可以进行加减乘除运算。当我们需要将不同分母的分数化为分母相同的分数时,可以采用找到这些分母的最小公倍数作为新的分母,然后通过乘以适当的倍数,将分数化为分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。
③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点
理解分数的基本性质。
教学用具
每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
在分数运算中,我们可以猜测是否存在一种性质,类似于除法中的商不变性质。也就是说,当我们将一个分数乘以一个相同的数值时,分子和分母是否会同时乘以这个数值呢?这种性质是否存在呢?让我们一起来探索吧!
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)请拿出三张同样大小的长方形纸条,将它们分别平均分成2份、4份、6份,并分别涂上不同的颜色。然后用分数表示每张纸条上被涂色部分所占的比例。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的'份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。
4.练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是本学期数学课程的一个重要内容。通过学习分数的基本性质,可以帮助我们更好地理解分数的概念,掌握约分和通分的方法,为以后学习比和解决实际生活中的问题奠定基础。在本节课中,我们将采用猜想和验证的方法,让同学们有足够的时间去探索、思考,从中体会数学的乐趣和魅力。通过这种探究式的学习,不仅能够掌握知识,更能培养同学们的创新意识和解决问题的能力,让他们学会用数学的思维方式去应对未来生活中的挑战。这也是我们培养学生综合素质的重要途径。
这节课是在学生已经熟悉了商不变的性质后,并且在实际应用中有一定经验的基础上进行的。我设计教学的方式是通过举一些实际生活中的例子来引导学生理解商不变的概念,并帮助他们更深入地应用这一概念解决问题。
1、商不变的性质是除法中的重要规律,它告诉我们在同一个除法算式中,被除数与商的乘积始终等于除数与余数的乘积。通过商不变的性质,我们可以发现除数、被除数、商和余数之间的关系。现在让我们尝试根据商不变的性质,思考分数的基本性质是什么?请大胆猜想并说出你的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、为了将知识转化为能力,我们设计了一系列练习,旨在帮助学生掌握分数的基本性质。这些练习具有典型性、多样性、深刻性和灵活性。首先,我们总结了分数的基本性质,然后进行了基础练习,以加深学生对这些性质的理解。在学习完整个知识点后,我们提供了综合练习,旨在巩固和提高学生的能力。通过应用和拓展,我们希望学生不仅能够加深对分数基本性质的理解,还能培养解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
《分数的基本性质》说课稿 16
教学目标:
知识与技能:
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
过程与方法:
结合趣味故事和填数活动,经历认识分数的基本性质的过程。
情感态度与价值观:
积极参与数学活动,发展学生数学思维,感受分数基本性质的合理性和确定性。
教学重点:
会应用分数的基本性质进行分数的改写。
教学难点:
理解分数的基本性质。
教学过程:
一、故事引入
同学们,你们爱看《西游记》吗?唐僧、孙悟空、猪八戒、沙和尚在去西天取经的过程中,路过了很多地方,虽然经历了很多磨难,但是也得到了很多人的帮助。下面我们来欣赏一下《西游记》的动画片。
二、探求新知
1、课件出示配乐故事和相应画面。
唐僧师徒四人去西天取经,有一天,路过女儿国,国王给了他们师徒四人一块饼。唐僧说:"咱们把这块饼平均分成四块,每人一块吧。"猪八戒听见了,急忙说:"一块太少了,师傅,我吃得多,就多分给我一块吧。"唐僧看了看这贪吃的徒弟,不知道怎么办好,孙悟空说:"师傅,那就把这块饼平均分成八块,给他二块吧。"唐僧笑了笑说:"你这个猴子,真狡猾。"
[上课时先看一段故事,学生一定非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
师:从上面的故事中,你了解到那些数学信息,想到了什么问题?
生1:唐僧要把饼平均分成四块,每人一块,很公平。
生2:孙悟空说把饼平均分成八块,给猪八戒两块。
生3:我知道猪八戒没有多吃到饼。
师:你们同意他的说法吗?让学生讨论:八戒到底有没有多吃到饼。
引导学生小组合作想办法证实自己的想法。
[分组讨论问题充分体现了学生合作学习的良好氛围,激发了他们的.求知欲,学生在激烈的讨论中思维能力得到进一步的提升。]
汇报:
生:我们组用画图的方法证明猪八戒没有多吃到饼。
展示了本小组的图
师:非常好,清楚明白,还有其他的方法吗?
学生们都认同他们组的做法
师:想一想我们上节课学得分数与除法的关系,能不能把分数转化成除法进行证明?
生:14=1÷4,1和4都同时扩大2倍,变成2÷8,商不变。2÷8写成分数形式是。
〔师进一步引导,培养学生知识的迁移能力。〕
最后得出结论:等于,八戒没有多吃到饼。
2、看图填数让学生用分数表示图中的涂色部分,填完后汇报。
师:观察上面的图和分数,说一说你发现了什么?
生:这几个分数都相等。
3、议一议
让学生仔细观察,看一看分数的分子和分母怎样变化,分数的大小不变?和同桌讨论一下。
学生试着归纳:分数的分子和分母都乘或除以相同的数,分数的大小不变。
师:"根据同学们的回答,老师也进行了总结 。"
师出示分数的基本性质贴在黑板上,指名学生读,学生自由读。
师告诉学生这就是分数的基本性质。
对照分数基本性质,让学生说说我们自己总结的比分数的基本性质少了什么?
生:我发现少了"零除外"
师:想一想:为什么性质中要规定"零除外"?
生:分数的分母不能为零,所以分母不能乘或除以零。
[新知识力求让学生主动探索,逐步获取。"孙悟空分饼"和看图填数得出的三组相等的分数为学生探索新知提供了材料,议一议是学生探求新知、独立思考的指南,引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。]
三、试一试
1、把34化成分母是12而大小不变的分数。
思考:要把34化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
2、讨论:猴子运用什么规律来分饼的?如果猪八戒要三块,猴子怎么分才公平呢?如果要四块呢?
[总结出分数的基本性质后,再让学生说出孙悟空的想法,并回答如果猪八戒要三块饼、四块饼,孙悟空怎么办?既前后照应,又让学生在帮孙悟空想办法的过程中,运用新知解决实际问题。]
四、多层练习,巩固深化
以游戏的方式完成,教师说分母或分子,学生说出相应的分子或分母,使组成的分数与给定的分数相等。
[练习设计由易到难,由浅入深,既巩固新知,又发展思维。]
《分数的基本性质》说课稿 17
教学目标
1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。
教学重难点
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
教学工具
课件
教学过程
一、复习旧知,沟通联系。
1、口答下面各题。
12÷3 =(12×10)÷(3×□)
18 ÷6 =(18÷□)÷(6÷ 3)
你是根据什么填的?还记得商不变的规律是怎样叙述的吗?
4 ÷5=()÷3
你是根据什么填的?分数与除法之间有什么关系?
2、猜想。
同学们,在除法里,有商不变的规律,而分数与除法是有联系的,那么,请同学们猜测一下,在分数里会不会也有类似的性质存在呢?
在分数里究竟有没有类似的性质存在,如果有,它又是怎样的呢?今天我们一起来研究这个问题。
二、探究新知,揭示规律。
1、感知规律
(1)动手操作
①小组合作分别把三张一样大的圆形纸片平均分成两份、四份、八份。
②涂色:把平均分成两份的将其中的一份涂上颜色,把平均分成四份的将其中的两份涂上颜色,把平均分成八份的将其中的四份涂上颜色。
③把涂色部分用分数表示出来。
④比一比:这3个分数之间有什么关系?
生通过动手操作,发现这三个分数之间是相等的'关系。
学生汇报后,教师用电脑演示。
生观察分子分母变化规律发现:分数的分子和分母同时乘相同的数,分数大小不变。
(2)继续发现
师课件出示三个大小形状完全相同的长方形,请学生用分数表示涂色部分,并观察涂色部分,看有什么发现。
生发现涂色部分是相同的。
观察分子分母的变化规律发现:分数的分子和分母同时除以相同的数,分数大小不变。
也不能同时除以0。
2、抽象概括,总结规律。
引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。(讨论为什么0除外)
想一想:根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3、运用规律,自学例题。
(1)分组讨论。
把和分别化成分母是12而大小不变的分数。分子应怎样变化?变化的依据是什么?
(2)汇报讨论情况。
(3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。
三、多层练习,巩固深化
1、基本练习。
根据分数的基本性质,把下列等式补充完整。
学生口答后,要求说出是怎样想的。
2、判断。(手势表示,并说明理由。)
(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。()
(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3)的分子乘以3,分母除以3,分数的大小不变。()
3、把2/3和4/24化成分母是12而大小不变的分数。
四、今天你有哪些收获。
《分数的基本性质》说课稿 18
教学内容:
人教版小学数学第十册第107页至108页。
教学目标:
1、分数的基本性质包括分子和分母的关系,分子代表分数的份数,分母代表每份的份数。分数的大小取决于分子和分母的比例关系,分子越大,分数越大;分母越大,分数越小。我们可以通过改变分数的分子和分母,使分数的大小保持不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:
长方形纸片、彩笔、各种分数卡片。
教学过程:
一、创设情境,激发兴趣
同学们,今天是个特别的日子,老师祝大家节日快乐!在我们庆祝自己的节日的同时,花果山圣地也洋溢着节日的喜庆气氛。让我们一起共同享受这美好的时刻吧!
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,好的,让我们一起来分一分。在这个故事中,猴王将香蕉分成了三份,每份都是一样的。这告诉我们公平是很重要的,每个人都应该得到公平的待遇。我们在日常生活中也要学会公平地对待他人,尊重他人的权利和利益。现在,请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告。请小组长分工一下,明确记录的同学。完成后,请上传操作报告。
任选一小组的同学台前展示实验报告,并 汇报 结论。
教师根据学生 汇报 板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的.分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的香蕉分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的数量吗?观察演示得出结论,教师板书:2=4=6。
3.引入新课:
我们今天来探讨黑板上两组相等的分数有什么共同的特点。同学们,观察一下黑板上的两组分数,它们看起来不同,但却有一个共同之处:无论分子和分母如何变化,这两组分数的大小始终保持不变。这让我们思考一个问题:这些分数的分子和分母之间是否存在某种规律呢?让我们一起来探讨这个变化规律。
三、比较归纳,揭示规律。
好的,让我们一起来探究一组相等分数。请你们选择黑板上的任意一组相等分数,然后共同讨论、探究,并完成探究报告。探究报告请写在纸上,准备好后我来收取。祝你们成功!
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)学生们根据探究报告观察到,在这个数列中,分子和分母的变化规律是分子每次递增1,分母每次递减2。接下来让我们选择一组学生到黑板上边说边用箭头表示出分子和分母的变化过程。
(根据学生回答板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以 )
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)分数的基本性质包括相同分母(或相同分子)的分数可以比较大小,相同分母的分数相加(或相减)时保持分母不变,相同分子的分数相加(或相减)时保持分子不变,分数乘除法时分子相乘(或分子相除)、分母相乘(或分母相除)。在这些基本性质中,需要提醒大家注意的是:分数的乘法和除法运算时,一定要将分数化简至最简形式,即分子与分母互质,避免出现不必要的误解和计算错误。例如,$frac{4}{6} imes frac{3}{4} = frac{1}{2}$,而不是$frac{3}{6}$或$frac{4}{4}$。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、猴王分饼的规律是每次将饼分成若干块,然后让小猴子选择一块,猴王自己取走剩下的块数。这样可以确保每次分配都是公平的。如果小猴子要四块,猴王可以将饼分成5块,让小猴子选择其中的1块,那么猴王自己就可以取走剩下的4块,这样分配是公平的。如果小猴子要五块,猴王可以将饼分成6块,让小猴子选择其中的1块,那么猴王自己就可以取走剩下的5块,这样分配也是公平的。
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×()5×()=9()
824=8÷()24÷()=()3
学生口答后,要求说出是怎样想的?
【《分数的基本性质》说课稿】相关文章:
《分数的基本性质》说课稿05-10
分数的基本性质的说课稿07-23
分数的基本性质说课稿06-26
【经典】分数的基本性质说课稿10-19
分数的基本性质(说课稿)07-04
分数的基本性质说课稿范文10-08
【精选】分数的基本性质说课稿3篇05-01
分数的基本性质说课稿(通用19篇)03-03
分数的基本性质说课稿汇编六篇05-05
(通用)分数的基本性质说课稿15篇10-18